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1. Introduction

The goal of these notes is to show how standard homotopical techniques reproduce
many physically interesting numerical invariants of scalar field theory on a graph. That
is, we will show how to compute the higher cumulants of this model. In some sense, these
notes are an example of how to do probability theory algebraically.

We warn the reader that throughout our discussion, our mathematical constructions
(such kernels etc.) should be interpreted in a homotopical sense. For the reader’s conve-
nience, we will express these at the point-set level as cochain complexes. In particular,
connective objects are contained in negative degrees, and the differentials are degree 1.

One can reasonably argue that this approach is overkill: the mathematics is much
more “advanced” than it needs to be. For example, we will assume a basic familiarity with
homotopy theory. The author hopes that the basic ingredients are simple enough that
these notes may serve as an entrance for contemporary applications of homotopy theory
to field theory via the Batalin-Vilkovisky forrmalism.

2. Input and Notation

Our basic input will be an undirected weighted graph, which we’ll denote as Γ.
Throughout, we will use the following notation:

• Γ0 will denote the set of vertices.
• Γ1 will denote the set of edges.
• wΓ : Γ1 → (0,∞) will denote the weight function.
• |Γ| the obvious space associated to the graph Γ, i.e. it’s geometric realization.

Moreover, given a directed edge e : ∆1 → Γ, we will denote it’s ith vertex as ei.

3. The Graph Laplacian

In this section, we perform a standard maneuvre from spectral graph theory: encode
aspects of this weighted graph as a linear object.

We will be to linearize the above combinatorial data by constructing a linear operator
we will refer to as the graph Laplacian. This will be built from the following (manifestly
symmetric) pairing:
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Γ×2
0 −→ R (3.1)(

v : ∗
∐
∗ → Γ

)
7−→ −1

2

∑
γ:e→Γ̃
e|∗∐

∗=v

(−1)δe0,e1 wΓ(e) (3.2)

Remark 1. Away from the diagonal it is a weighted sum over edges connecting the two
chosen vertices.

Definition 2. Taking the adjoint of the linearization of the above pairings defines the
graph Laplacian associated to Γ:

QΓ : RΓ0 → (RΓ0)∨

Remark 3. We are thinking RΓ0 as the vector space of functions from the set of vertices to
R. In other words, a point in this space is a decoration of the vertices by real numbers.

Remark 4. The set of vertices give a natural basis for RΓ0 . We invite the reader to imagine
one of these vector as representing some ”body” concentrated at that vertex.

In the canonical basis spanned by the vertices {φi}, we can suggestively express QΓ

as a vector field with linear coefficients:

QΓ =
1

2
Qijφ

†
j

∂

∂φi

where we adopt the notation that φ†i is the linear coordinate associated to φi.

Remark 5. Note that Qij = Qji, so that (Qij) defines a symmetric matrix.

We may model aspects of the above as a single linear object, by taking the kernel of
this map. This admits a standard representation as a single cochain complex:

EΓ :=
(
RΓ0

QΓ−→ (RΓ0)∨[−1]
)

= ker(QΓ)

As EΓ is the kernel of a map out of RΓ0 , there is a natural linear map:

EΓ → RΓ0

Remark 6. In order to think of this geometrically, we invite the reader to view this object
geometrically. This is accomplished by viewing EΓ through Grothendieck’s S-point formal-
ism. For computational reasons, we will study this object perturbatively, around the zero
vector of EΓ. The theory of formal moduli problems provides a rigorous and principled
setting to perform these computations. That is, we’ll view EΓ via its

CAlgaug −→ Spaces

A 7−→ MapsVect(E
∨
Γ, A)
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Furthermore, the diagonal terms of ∆Γ were designed so that there is an equivalence

EΓ ' Rπ0(|Γ|) ⊕
(
Rπ0(|Γ|))∨[−1]

Therefore, EΓ encodes the (-1)-shifted cotangent bundle of the connected components
of |Γ|. Therefore, this linear object only encodes the connected components of the graph.

We will describe how to encode certain geometric features through a certain nonde-
generate pairing. We will present this pairing in two, dual forms: a symmetric form and a
symplectic forms. Their duality is explicitly related through Koszul duality.

3.1. Symplectic Formulation. The above object has additional structure: a symplectic
form of degree -1, induced by the pairing between RΓ0 and (RΓ0)∨:

ωΓ : Λ2(EΓ)→ R[−1]

so that ωΓ ∈ Λ2(E∨Γ)[−1]. Linear coordinates provide Darboux coordinates for this form:

ωΓ =
∑
i∈Γ0

ddRφi ∧ ddRφ
†
i

The nondegeneracy means that contracting ωΓ along a vector field induces an equivalence:

ω∨Γ : EΓ ' E∨Γ[−1]

X 7→ ιXω

Throughout our discussion, we adopt standard notation in the BV formalism. A
generic element of RΓ0 will be denoted φ. Given any φ, it’s conjugate momentum will be
denoted ϕ†. In other words, our notation is such that:

ω∨Γ(φ) = φ†

In summary, we have encoded aspects of the graph Γ into an R−linear object EΓ ,
equipped with a symplectic form of degree -1, ωΓ.

Note that EΓ

3.2. Symmetric Formulation. As an aside, we point out that abstract nonsense shows
ω∨Γ translates the data of ωΓ to a map of the form:

< −,− >: Sym2
(
(T[−1]|φ=0EΓ)∨

)
→ R[3]

In other words, the symplectic form on EΓ of degree (−1) is equivalent to a nondegen-
erate symmetric pairing of degree 2− (−1) = 3 on T[−1]|0EΓ ' EΓ[−1].

We now describe the Poisson bracket associated to ωΓ.

3.3. Poisson Bracket. First, the equivalence ω∨Γ provides an antisymmetric linear pairing
on E∨Γ[−1]:

Λ2(E∨Γ[−1])→ R[−1]

whose kernel {−,−} ∈ Λ2(EΓ[1])
The general, and somewhat surprising isomorphism:

Λ2(E∨Γ[−1]) ' Sym2(E∨Γ)[−2]
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means that, for a (-1) shifted symplectic structure, the Poisson kernel is a symmetric

KΓ =
∂

∂ai

∂

∂a†i
∈ Sym2(EΓ)[1]

Viewing this as a formal second order differential operator yields an endomorphism of
polynomials in EΓ of degree 1 and weight -2:

∂KΓ
: Sym•(E∨Γ)→ Sym•−2(E∨Γ)

which squares to zero, reflecting that partial derivatives commute.
In order to illuminate the relationship of the above object with field theory, we now

show how to encode the above data in a generating function, which we’ll refer to as

3.4. The Classical Action. Note that we can combine the pairing and QΓ into a qua-
dratic function:

SΓ(φ, φ†) =
1

2
ωΓ(φ,QΓφ)

So that SΓ has degree zero. 1 In the the standard basis, one may compute:

SΓ(φ, φ†) =
1

2

∑
e∈Γ1

wΓ(e)(φ(e0)− φ(e1))2

So that SΓ gives a (weighted) measure of how φ changes between adjacent vertices. We
shall refer to this action as the classical action.

Explicit calculation shows that the action is the generating function for the net weight
between distinct vertices. More precisely,

∂2

∂ai∂aj
|φ=0S

is the sum of weights of all the (undirected) edges connecting i and j. In particular, the
classical action is ”local” in the sense that:

∂2

∂ai∂aj
SΓ = 0

whenever there does not exist an edge connecting i to j.

Remark 7. The action also has a clear interpretation in terms of the symplectic structure.
First, one can see that:

ddRSΓ = ιQΓ
ωΓ

Borrowing the language of symplectic geometry, SΓ is a Hamiltonian function for the vec-
tor field associated to QΓ. Equivalently, SΓ is the conserved quantity associated to the
symmetry generated by the vector field QΓ:

{S,−} = QΓ

1the degree of QΓ compensates for the shift of ωΓ
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Moreover, one can see that EΓ is the pullback of:

RΓ0
d(0)−→ T∗RΓ0

ddRSΓ←− RΓ0

In other words, EΓ is the intersection of ddRSΓ with the zero section, a.k.a. the critical
locus of S. In other words, the action provides a variational formulation for EΓ

3.5. Diagonalization. We now exploit the spectral theorem in order to simultaneously
split the EΓ and it’s symmetric pairing KΓ. More precisely, the classical spectral theorem
first states that there exists an equivalence:

A : EΓ '
⊕

λi∈Spec(∆Γ)

(
R{pi}·

Qpi−→ R{p†i}[−1]
)

Where:

Qp = λip
†
i

∂

∂pi
So that (λi, pi) form an ”eigenbasis” with λi ≥ 0.

The second part of the spectral theorem states that this eigenbasis may be chosen to
be “orthonormal” with respect to our pairing, In this context, this means we can chose A
so that

A∗KΓ =
∂

∂pi

∂

∂p†i
Reflecting that symmetric matrices admit an orthogonal eigendecomposition.

Remark 8. This diagonalization is arguably the primary benefits of this approach. For
example, every positive number gives a projection map which collapses eigenspaces with
eigenvalues greater than the chosen number. Geometrically, this transformation efficiently
filters out decorations which vary along edges beyond a threshold set by our chosen number.
This compression is very hard to articulate in the language of graphs: the linearization was
essential.

Therefore, in order to exploit the above diagonalization, the invariance of our con-
structions is essential.

4. Summary So Far

So far, we have constructed from the data of a weighted graph Γ the following:

• A cochain complex EΓ, equipped with a map:

EΓ = ker(QΓ)→ RΓ0

• A (-1) shifted symplectic form, ωΓ : Λ2(E∨Γ)[−1], giving rise to an equivalence:

ω∨Γ : EΓ ' E∨Γ[−1]

Which we can use to write down a pairing encoding the Poisson bracket
• {−,−} : Λ2(E∨Γ[−1])→ R·~[−1] with associated Poisson Kernel KΓ ∈ Sym2(EΓ)[−1].

This may be equivalently seen as:

∆Γ : Sym2
(
(E∨Γ[−1])[1]

)
→ R[1]
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With these classical ingredients in place, we’d now like to execute a standard

5. Quantization Procedure

Dirac’s quantization recipe tells us that we should interpret the Poisson bracket on
linear functions on a symplectic vector space as a Lie extension.

This follows from first projecting off the higher than quadratic parts of the underlying

UModk
CE∗(E

∨
Γ[−1])→ Sym2(E∨Γ[−1])

∆Γ→ R[1]

Which, through the procedure outlined in the appendix, produces a central extension of
E∨Γ[−1] of degree 1 - 2 = -1.

We’ll refer to this central extension as the Heisenberg Lie algebra associated to (EΓ, ωΓ),
Heis(EΓ, ωΓ). By definition, it fits into a fibre sequence of Lie algebras:

R · ~[−1] −→ Heis(EΓ, ωΓ)
~=0−→ E∨Γ[−1]

Therefore, we think of the Poisson bracket as endowing E∨Γ[−1]⊕R·~[−1] with the structure
of a Lie algebra, which we will denote:

Heis(EΓ, ωΓ) '
(

(E∨Γ ⊕ R · ~)[−1], [−,−] = ~{−,−}
)

We can take the Chevalley-Eilenberg chains functor to this sequence, to obtain a
sequence of coalgebras:

R[~]→ CE∗(Heis(EΓ, ωΓ))
~=0−→ Sym•(E∨Γ)

Our previous discussion provides an explicit model for the middle term in the above
sequence as the cochain complex:

CE∗(Heis(EΓ, ωΓ)) '
(

Sym(E∨Γ)[~],QΓ + ~∂KΓ

)
(5.1)

'
(
R[pi, p

†
i , ~], λipi

δ

δp†i
+

~
λi

δ2

δpiδp
†
i

)
(5.2)

Moreover, shifting the dual of the map EΓ ' ker∆Γ → RΓ0 extends to a map of Lie
algebras: (

RΓ0
)∨

[−1]→ Heis(EΓ, ωΓ)

Upon which we can pplying Chevalley Eilenberg chains to obtain a map of coalgebras:

Sym
(
(RΓ0)∨

)
→ CE∗

(
Heis(EΓ, ωΓ)

)
6. Homotopy Transfer/Renormalization Group Flow

We begin with a lemma, which gives an abstract way of comparing the above con-
struction for homotopic pairings:
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Lemma 9. Given any P0 with

QΓP0 = KΓ −K0

There exists a map:

e~∂P0 : CE∗(Heis(EΓ, ωΓ))→ CE∗(Heis(EΓ, ω0))

6.1. The Partition Function. In particular, when K0 = 0 and K0 = PΓ we obtain the
map:

e~PΓ : CE∗(Heis(EΓ, ωΓ)))
'→ Sym•(E∨Γ)[~]

For example,

PΓ =
1

λi

∂2

∂pi∂pi
= (QΓ)−1

ij

∂2

∂xi∂xj

Where the sum is being taken over all nonzero eigenvalues, and QΓ first projects off the
nullspace and then applies Q−1

Γ

Remark 10. Note that we could have instead only projected off those eigenvectors with
eigenvalue above a certain threshold, obtaining an “a low energy effective field theory”.

Moreover, evalutating a closed cycle of EΓ
2 yields a map of the form:

CE∗(Heis(EΓ, ωΓ))→ R[~]

Precomposing with the inclusion of gives the partition function:

Z : Sym
(
(RΓ0)∨

)
→ R[~]

One can check that the above map evaluates on some polynomial as:

e
(QΓ)−1

ij
∂2

∂xi∂xj f(x)|x=0 =

∫
dx · e−

1
2
<x,Qx>f(x)

which we can take the logarithm of to obtain a function:

Seff = logZ

Which we’d either call the cumulant generating function, or the effective Hamiltonian/Action.
The Taylor coefficients of this function may be computed Feynman diagrammatically.

Remark 11. Note this shouldn’t be too surprising, as a Gaussian integral and (certain)
retractions simply invert (certain) matrices.

2i.e. vector constant along each connected component
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7. Appendix: Central Extensions

In this section, we will review the relationships between the Chevalley-Eilenberg con-
struction and central extensions. We begin by fixing a Lie algbera g, and along with a map
of k-modules:

UModk
CE∗(g)

η→ k[n]

In other words, an closed element of the Chevalley-Eilenberg cochains on g.
This map extends to a a map of coalgebras into the cofree commutative coalgebra

generated by k[n]. Furthermore, this cofree commutative coalgebra is equivalent to the
Chevalley-Eilenberg chains on the abelian Lie algebra generated by k[n − 1], so that the
above is equivalent to:

CE∗(g)→ CE∗(k[n− 1])

Differentiating this map gives a map of Lie algebras, which gives a fibre sequence of Lie
algebras

gη → g→ k[n− 1]

Note that the right adjointness of the abelian Lie algebra functor and the naturality of
the pullback forces the fibre of gη → g to be equivalent to the abelian Lie algebra k[n− 2].
In other words, gη sits in the the middle of a fibre sequence of Lie algebras,

k[n− 2]→ gη → g

Which is the definition of a central extension of Lie aglebras of (co)homological degree
(−)[n− 2].

This further implies that there exists some an equivalence of k-modules:

gη ' g⊕ k[n− 2]

Fixing such a splitting of the above type decomposes and factors the bracket on gη

gη : Λ•(gη[1])→ gη[2]

into:

`gη = `g + η : Sym•(g[1])→ (g⊕ k[n− 2])[2]) ' g[2]⊕ k[n]

In summary, we see that every closed element of (co)homological degree (−)n Chevalley-
Eilenberg cochains of a Lie algebra gives rise to a central extension of (co)homological
degree (−)[n− 2].

7.1. Example. For example, let’s take g to be an ordinary Lie aglebra, and fix a map

η : UModk
CE∗(g)→ k[n]

In this case, CE∗(g) is concentrated in strictly negative degree, so that the only interesting
extensions will come from maps into k[n] for n ≤ 1. Moreover, for degree reasons, there
must be a factorization of graded k-modules:

UModk
(CE∗(g))→ Symn(g[1])→ k[n]
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If we want our central extension to a classical lie algebra, we need n = 2, so that the data
is determined by a linear map:

Λ2(g)→ k

For example, when g is the lie algebra of the two dimensional torus, so that:

CE•(g) ' H•dR(T2) ' R[dx, dp]

The above discussion therefore says that up to isomorphism, there exists a one dimensional
vector space of central extensions.

A standard translation invariant symplectic form on the torus of gives a basis for this
vector space. The central defines the classical Heisenberg Lie algebra:

[∂x, ∂p] = ω(∂x, ∂p)~ = {x, p}~
Where x, p are the coordinate functions around the identity arising as the Noether currents
corresponding to the infinitesmal symmetries ∂x, ∂p.

A Lie algebraic model for the notion of quantization would say that a one-dimensional
particle admits a unique quantization, up to a choice of ~. This constants may then be
approximating fixed by performing an experiment.

As another example, we take take g to be the lie algebra of SU(2), in which case we
see that the group of interest is:

H2CE∗(su(2)) ' H2
dR(S3) ' 0

So that every central extension of degree zero su(2) is trivial. This means that every
comoment map:

g→ X(M)

may be factored to give a global conserved current:

g→ C∞(M)

in a manner compatible with the respecting Lie Structures.


